# Digital Communication Systems ECS 452 

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
4. Mutual Information and Channel Capacity


Office Hours:
BKD, 6th floor of Sirindhralai building
Tuesday $\quad 14: 20-15: 20$
Wednesday 14:20-15:20
Friday $\quad 9: 15-10: 15$

## Reference for this chapter

- Elements of Information Theory
- By Thomas M. Cover and Joy A. Thomas
- 2nd Edition (Wiley)
- Chapters 2, 7, and 8
- $1^{\text {st }}$ Edition available at SIIT library: Q360 C68 1991




# Digital Communication Systems ECS 452 

## Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th<br>Operational Channel Capacity

# Digital Communication Systems ECS 452 

## Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th<br>Information Channel Capacity

## Channel Capacity

"Operational": max rate at which reliable communication is possible

Channel Capacity
Arbitrarily small error probability can be achieved.
"Information": $\max _{\mathbf{p}} I(X ; Y)$ [bpcu]

Shannon [1948] shows that these two quantities are actually the same.

## MATLAB

```
function H = entropy2s(p)
% ENTROPY2 accepts probability mass function
% as a row vector, calculate the corresponding
% entropy in bits.
p=p(find(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate 0
if length(p)==0
    H = 0;
else
    H = simplify(-sum(p.*log(p))/log(sym(2)));
end
```

```
function I = informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [];
for i = 1:X
    temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);
I = HY-HYgX;
```


## Capacity calculation for BAC



Capacity of 0.0918 bits is achieved by $\underline{p}=[0.5380,0.4620]$

## Capacity calculation for BAC



```
close all; clear all; >> Capacity_Ex_BAC
syms p0
p = [p0 1-p0];
Q = [1 9; 4 6]/sym(10);
I = simplify(informations(p,Q))
p0o = simplify(solve(diff(I)==0))
po = eval([p0o 1-p0o])
C = simplify(subs(I,p0,p0o))
eval(C)
```



```
>p0o =
    (27648*2^(1/3))/109565-(69984*2^(2/3))/109565 + 135164/109565
C=
    (log((3*3^(4/5))/10)*((27648*2^(1/3))/109565-(69984*2^(2/3))/109565 +
    135164/109565))/log(2)-(log((104976*2^(2/3))/547825-(41472*2^(1/3))/547825+
16384/547825)*((104976*2^(2/3))/547825-(41472*2^(1/3))/547825 +
16384/547825) + log((41472*2^(1/3))/547825-(104976*2^(2/3))/547825 +
    531441/547825)*((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 +
    531441/547825))/log(2)+(log((5*2^(3/5)*3^(2/5))/6)*((27648*2^(1/3))/109565 -
    (69984*2^(2/3))/109565 + 25599/109565))/log(2)

\section*{Same procedure applied to BSC}

```

close all; clear all;
syms p0
p = [p0 1-p0];
Q = [6 4; 4 6]/sym(10);
I = simplify(informations(p,Q))
p0o = simplify(solve(diff(I)==0))}|\begin{array}{l}{\textrm{p}0\textrm{o}}<br>{1/2}
po = po=
po = eval([p0o 1-p0o])}<0.5000 0.500
C = simplify(subs(I,p0,p0o))
log((2*2^(2/5)*3^(3/5))/5)/log(2)
->ans=
eval(C)
0.0290

```

\section*{Blahut-Arimoto algorithm}
```

function [ps C] = capacity_blahut(Q)
% Input: Q = channel transition probability matrix
% Output: C = channel capacity
% ps = row vector containing pmf that achieves capacity
tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition
% is "never" reached")
nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n
qT = pT**;
% Eliminate the case with 0
% Column-division by qT
temp = Q.*(ones(nx,1)*(1./qT));
%Eliminate the case of 0/0
l2 = log2(temp);
l2(find(isnan(l2) | (l2==-inf) | (l2==inf)))=0;
logc = (sum(Q.*(l2),2))';
CT = 2.^(logc);
A = log2(sum(pT.*CT)); B = log2(max(CT));
if((B-A)<tl)
break
end
% For the next loop
pT = pT.*CT; % un-normalized
pT = pT/sum(pT); % normalized
if(k == n)
fprintf('\nNot converge within n loops\n')
end
end
ps = pT;
C = (A+B)/2;

## Capacity calculation for BAC: a revisit



```
close all; clear all; >> Capacity_Ex_BAC_blahut
Q = [1 9; 4 6]/10;
    0.5376 0.4624
[ps C] = capacity_blahut(Q)
    0.0918
```


## Berger plaque



## Richard Blahut

- Former chair of the Electrical and
Computer
Engineering
Department at the University of Illinois at Urbana-Champaign
- Best known for Blahut-Arimoto algorithm
(Iterative
Calculation of C)


Modem Theory
An introduction to Telecommunications


## Raymond Yeung

- BS, MEng and PhD degrees in electrical engineering from Cornell University in 1984, 1985, and 1988, respectively.



