
1

Digital Communication Systems
ECS 452

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

4. Mutual Information and
Channel Capacity

Office Hours:
BKD, 6th floor of Sirindhralai building

Tuesday 14:20-15:20
Wednesday 14:20-15:20
Friday 9:15-10:15

Reference for this chapter

2

 Elements of Information
Theory

 By Thomas M. Cover and
Joy A. Thomas

 2nd Edition (Wiley)

 Chapters 2, 7, and 8

 1st Edition available at SIIT
library: Q360 C68 1991

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Operational Channel Capacity

3

Digital Communication Systems
ECS 452

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Information Channel Capacity

4

Digital Communication Systems
ECS 452

Channel Capacity

5

Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: [bpcu]

Arbitrarily small error
probability can be achieved.

Shannon [1948] shows that these two quantities are actually the same.

MATLAB

6

function H = entropy2s(p)
% ENTROPY2 accepts probability mass function
% as a row vector, calculate the corresponding
% entropy in bits.
p=p(find(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate 0
if length(p)==0

H = 0;
else

H = simplify(-sum(p.*log(p))/log(sym(2)));
end

function I = informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [];
for i = 1:X

temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);
I = HY-HYgX;

Capacity calculation for BAC

7

Capacity of 0.0918 bits is achieved by  0.5380, 0.4620p 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p0
I(X

;Y
)

0

1

0

1

0.9

0.1

0.4

0.6

X Y

0.1 0.9
0.4 0.6

Q
 

  
 

Capacity calculation for BAC

8

close all; clear all;
syms p0
p = [p0 1-p0];
Q = [1 9; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))

po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BAC
I =
(log(2/5 - (3*p0)/10)*((3*p0)/10 - 2/5) - log((3*p0)/10 + 3/5)*((3*p0)/10 +

3/5))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) +

(p0*log((3*3^(4/5))/10))/log(2)

p0o =
(27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 + 135164/109565

po =
0.5376 0.4624

C =
(log((3*3^(4/5))/10)*((27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 +
135164/109565))/log(2) - (log((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 +
16384/547825)*((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 +
16384/547825) + log((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 +
531441/547825)*((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 +
531441/547825))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*((27648*2^(1/3))/109565 -
(69984*2^(2/3))/109565 + 25599/109565))/log(2)

ans =
0.0918

0

1

0

1

0.9

0.1

0.4

0.6

X Y
0.1 0.9
0.4 0.6

Q
 

  
 

Same procedure applied to BSC

9

close all; clear all;
syms p0
p = [p0 1-p0];
Q = [6 4; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))

po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BSC
I =
(log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) -
(p0*log((5*2^(3/5)*3^(2/5))/6))/log(2) - (log(p0/5 +
2/5)*(p0/5 + 2/5) - log(3/5 - p0/5)*(p0/5 -
3/5))/log(2)
p0o =
1/2
po =

0.5000 0.5000
C =
log((2*2^(2/5)*3^(3/5))/5)/log(2)
ans =

0.0290

0

1

0

1

0.4

0.6

0.4

0.6

X Y
0.6 0.4
0.4 0.6

Q
 

  
 

Blahut–Arimoto algorithm

10

function [ps C] = capacity_blahut(Q)
% Input: Q = channel transition probability matrix
% Output: C = channel capacity
% ps = row vector containing pmf that achieves capacity

tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition

% is "never" reached")
nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n

qT = pT*Q;
% Eliminate the case with 0
% Column-division by qT
temp = Q.*(ones(nx,1)*(1./qT));
%Eliminate the case of 0/0
l2 = log2(temp);
l2(find(isnan(l2) | (l2==-inf) | (l2==inf)))=0;
logc = (sum(Q.*(l2),2))';
CT = 2.^(logc);
A = log2(sum(pT.*CT)); B = log2(max(CT));
if((B-A)<tl)

break
end
% For the next loop
pT = pT.*CT; % un-normalized
pT = pT/sum(pT); % normalized
if(k == n)

fprintf('\nNot converge within n loops\n')
end

end
ps = pT;
C = (A+B)/2; [capacity_blahut.m]

Capacity calculation for BAC: a revisit

11

close all; clear all;

Q = [1 9; 4 6]/10;

[ps C] = capacity_blahut(Q)

>> Capacity_Ex_BAC_blahut
ps =

0.5376 0.4624
C =

0.0918

0

1

0

1

0.9

0.1

0.4

0.6

X Y
0.1 0.9
0.4 0.6

Q
 

  
 

Berger plaque

12

Richard Blahut

13

 Former chair of the
Electrical and
Computer
Engineering
Department at the
University of Illinois
at Urbana-Champaign

 Best known for
Blahut–Arimoto
algorithm
(Iterative
Calculation of C)

Raymond Yeung

14

 BS, MEng and PhD
degrees in electrical
engineering from
Cornell University
in 1984, 1985, and
1988, respectively.

